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0 Setting up the R session

Before starting, the user should choose a working directory, preferably a directory devoted exclusively for this tutorial.
After starting an R session, change working directory, load the requisite packages, set standard options, and load the
results of previous sections:

# Display the current working directory

getwd();

# If necessary, change the path below to the directory where the data files are stored.

# "." means current directory. On Windows use a forward slash / instead of the usual \.

workingDir = ".";

setwd(workingDir);

# Load WGCNA package

library(WGCNA)

# Load additional necessary packages

library(cluster)
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# The following setting is important, do not omit.

options(stringsAsFactors = FALSE);

# Load the previously saved data

load("Simulated-StandardScreening.RData");

attach(ModuleEigengeneNetwork1)

5 Construction of a weighted gene co-expression network and network
modules

In this section we provide a step-by-step overview of gene network construction and module detection.

5.a Defining a weighted gene co-expression network

We illustrate network construction and evaluation of scale free topology. Recall that the genes correspond to the
columns of datExpr.

# here we define the adjacency matrix using soft thresholding with beta=6

ADJ1=abs(cor(datExpr,use="p"))^6

# When you have relatively few genes (<5000) use the following code

k=as.vector(apply(ADJ1,2,sum, na.rm=T))

# When you have a lot of genes use the following code

k=softConnectivity(datE=datExpr,power=6)

# Plot a histogram of k and a scale free topology plot

sizeGrWindow(10,5)

par(mfrow=c(1,2))

hist(k)

scaleFreePlot(k, main="Check scale free topology\n")

The resulting plot is shown in Fig. 1. The approximate straight line relationship (high R2 value, right panel in Fig. 1)
shows approximate scale free topology. In most applications we find that scale free topology is at least approximately
satisfied when a high power is chosen for defining the adjacency matrix. We should point out that is not necessary
that a network satisfies scale free topology; scale free topology may not be satisfied if the data are comprised of
globally very distinct groups of samples (e.g. different tissues types). Poor fit to scale free topology may also indicate
the presence of array outliers.

5.b Computational restrictions on the number of genes

For computational reasons, we restrict the network analysis to 3600 most connected genes.

datExpr=datExpr[, rank(-k,ties.method="first" )<=3600]

This restriction is only necessary when constructing the network in a step-by-step, “manual” way. The user can also
use the automatic one-step function blockwiseModules that is able to handle large data sets. We refer the reader to
Tutorials I, II (mouse data analysis) for examples of using the automatic function on large data sets.

5.c Comparing various module detection methods

5.c.1 Definition of clustering dissimilarity from adjacency

Many clustering procedures require a dissimilarity matrix as input. We define a dissimilarity based on adjacency:

# Turn adjacency into a measure of dissimilarity

dissADJ=1-ADJ1
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Figure 1: The left panel shows a histogram of network connectivities. The right panel shows a log-log plot of the same
histogram. The approximate straight line relationship (high R2 value) shows approximate scale free topology. In
most applications we find that scale free topology is at least approximately satisfied when a high power is chosen for
defining the adjacency matrix. We should point out that is not necessary that a network satisfies scale free topology;
scale free topology may not be satisfied if the data are comprised of globally very distinct groups of samples (e.g.
different tissues types). Poor fit to scale free topology may also indicate the presence of array outliers.

5.c.2 Use of topologial overlap to define dissimilarity

Adjacency can be used to define a separate measure of similarity, the Topological Overlap Matrix(TOM) [2, 1]:

dissTOM=TOMdist(ADJ1)

collectGarbage()

In the following subsections we show that Partitioning Around Medoids (PAM) is not a good choice for clustering
genes because it forces all genes into a module. We then illustrate the use of hierarchical clustering and several
branch cut methods.

5.c.3 Partitioning Around Medoids based on adjacency

We use PAM with 3 different numbers of clusters:

pam4=pam(as.dist(dissADJ), 4)

pam5=pam(as.dist(dissADJ), 5)

pam6=pam(as.dist(dissADJ), 6)

# Cross-tabulte the detected and the true (simulated) module membership:

table(pam4$clustering, truemodule)

table(pam5$clustering, truemodule)

table(pam6$clustering, truemodule)

The results are

> table(pam4$clustering, truemodule)
truemodule
blue brown green grey turquoise yellow

1 51 8 17 792 530 1
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2 380 10 34 261 37 6
3 12 4 17 167 17 172
4 7 218 52 190 16 1

> table(pam5$clustering, truemodule)
truemodule
blue brown green grey turquoise yellow

1 50 5 2 742 524 1
2 373 10 3 234 35 6
3 11 3 2 142 15 170
4 9 7 107 133 16 2
5 7 215 6 159 10 1

> table(pam6$clustering, truemodule)
truemodule
blue brown green grey turquoise yellow

1 39 3 1 440 310 1
2 21 5 3 412 235 1
3 363 10 3 186 26 6
4 11 3 2 119 8 169
5 9 6 106 119 14 2
6 7 213 5 134 7 1

The rows correspond to clusters found by PAM, while the columns correspond to simulated modules. Numbers in the
table are gene counts in the intersection of the respective simulated and found modules. PAM performs terribly on
this data set since the grey, non-module genes are “forced” into the observed modules (corresponding to the rows).
In general, partitioning methods that dont allow for unclustered objects will have a problem on this simulated data
set.

5.c.4 Partitioning Around Medoids based on topological overlap

We again use PAM with the same three different numbers of clusters:

pamTOM4=pam(as.dist(dissTOM), 4)

pamTOM5=pam(as.dist(dissTOM), 5)

pamTOM6=pam(as.dist(dissTOM), 6)

# Cross-tabulte the detected and the true (simulated) module membership:

table(pamTOM4$clustering, truemodule)

table(pamTOM5$clustering, truemodule)

table(pamTOM6$clustering, truemodule)

The results of the cross-tabulation are

> table(pamTOM4$clustering, truemodule)
truemodule
blue brown green grey turquoise yellow

1 58 15 34 1100 576 10
2 384 11 48 197 21 9
3 3 2 4 42 2 159
4 5 212 34 71 1 2

> table(pamTOM5$clustering, truemodule)
truemodule
blue brown green grey turquoise yellow

1 58 13 9 1087 574 10
2 384 10 7 190 20 9
3 0 4 97 28 3 0
4 3 2 0 40 2 159
5 5 211 7 65 1 2
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> table(pamTOM6$clustering, truemodule)
truemodule
blue brown green grey turquoise yellow

1 49 11 7 808 475 8
2 9 2 2 285 99 2
3 384 10 7 185 20 9
4 0 4 97 28 3 0
5 3 2 0 40 2 159
6 5 211 7 64 1 2

As above, the rows correspond to clusters found by PAM, while the columns correspond to simulated modules.
Numbers in the table are gene counts in the intersection of the respective simulated and found modules. The
performance of pam is not good. This is why we will use hierarchical clustering.

5.c.5 Average linkage hierachical clustering with adjacency-based dissimilarity

Here we illustrate the use of average linkage hierachical clustering.

hierADJ=hclust(as.dist(dissADJ), method="average" )

# Plot the resulting clustering tree together with the true color assignment

sizeGrWindow(10,5);

plotDendroAndColors(hierADJ, colors = data.frame(truemodule), dendroLabels = FALSE, hang = 0.03,

main = "Gene hierarchical clustering dendrogram and simulated module colors" )

The result is shown in Fig. 2. Note that the branches correspond to the true modules. The question now is how
should we cut the branches of the dendrogram to determine module membership?
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Figure 2: Gene clustering tree (dendrogram) obtained by hierarchical clustering of adjacency-based dissimilarity.
The color row below the dendrogram indicates module membership.

5.c.6 Module definition via static (fixed) height cut-off

By our definition, modules correspond to branches of the tree. The question is what height cut-off should be used?
This depends on the biology. Large heigth values lead to big modules, small values lead to small but tight modules.
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In reality, the user should use different thresholds h1 (red below) to assess how robust the findings are. The function
cutreeStaticColor colors each gene by the branches that result from choosing a particular height cut-off. The label
“grey” is reserved to color genes that are not part of any module. Here we only consider modules that contain at
least minSize genes.

colorStaticADJ=as.character(cutreeStaticColor(hierADJ, cutHeight=.99, minSize=20))

# Plot the dendrogram with module colors

sizeGrWindow(10,5);

plotDendroAndColors(hierADJ, colors = data.frame(truemodule, colorStaticADJ),

dendroLabels = FALSE, abHeight = 0.99,

main = "Gene dendrogram and module colors")

The resulting plot is shown in Fig. 3. The static height cut-off method works quite well at retrieving the true modules.
More precisely, it works well at retrieving highly connected intramodular hub genes in the modules. However, it
misses a lot of genes at the fringes of the modules.
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Figure 3: Gene clustering tree (dendrogram) obtained by hierarchical clustering of adjacency-based dissimilarity. The
color rows below the dendrogram indicate identified and simulated module membership. The static height cut-off
method works quite well at retrieving the true modules. More precisely, it works well at retrieving highly connected
intramodular hub genes in the modules. However, it misses a lot of genes at the fringes of the modules.

5.c.7 Module definition via dynamic branch cutting methods

We now use two Dynamic Tree Cut methods in which the height cut-off plays a minor role. The first method is
called the “tree” method and only uses the dendrogram as input.

branch.number=cutreeDynamic(hierADJ,method="tree")

# This function transforms the branch numbers into colors

colorDynamicADJ=labels2colors(branch.number )

The second method is called “hybrid” and is a hybrid between hclust and pam. As input it requires both a dendrogram
and the dissimilarity that was used to create the dendrogram.

colorDynamicHybridADJ=labels2colors(cutreeDynamic(hierADJ,distM= dissADJ,

cutHeight = 0.998, deepSplit=2, pamRespectsDendro = FALSE))
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# Plot results of all module detection methods together:

sizeGrWindow(10,5)

plotDendroAndColors(dendro = hierADJ,

colors=data.frame(truemodule, colorStaticADJ,

colorDynamicADJ, colorDynamicHybridADJ),

dendroLabels = FALSE, marAll = c(0.2, 8, 2.7, 0.2),

main = "Gene dendrogram and module colors")

The plot is shown in Fig. 4. The static method (3rd band) has high specificity but low sensitivity, i.e. its module
membership assignment is very accurate but it misses a lot of genes (too many grey genes). In contrast, the dynamic
hybrid method (first band) has high sensitivity but low specificity. Actually, we simulated the grey genes so that they
would have a weak ”background” correlation with the turquoise module genes. Therefore, it comes as no surprise
that the hybrid method assigns turquoise to many grey module genes. The ”tree” method (second color band) does
not perform very well since it splits some of the branches into two sub-branches. As we demonstrate below, one
should always look at the tree and the correlations between the module eigengenes to determine whether two modules
should be merged.
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Figure 4: Gene clustering tree (dendrogram) obtained by hierarchical clustering of adjacency-based dissimilarity.
The color rows below the dendrogram indicate module membership identified by the three methods discussed in text
and the simulated module membership. The static method (3rd band) has high specificity but low sensitivity, i.e. its
module membership assignment is very accurate but it misses a lot of genes (too many grey genes). In contrast, the
dynamic hybrid method (first band) has high sensitivity but low specificity. Actually, we simulated the grey genes
so that they would have a weak ”background” correlation with the turquoise module genes. Therefore, it comes as
no surprise that the hybrid method assigns turquoise to many grey module genes. The ”tree” method (second color
band) does not perform very well since it splits some of the branches into two sub-branches. As we demonstrate
below, one should always look at the tree and the correlations between the module eigengenes to determine whether
two modules should be merged.

5.c.8 Module definition using the topological overlap based dissimilarity

We now use the topological overlap based dissimilarity as input to the clustering methods we used above.

# Calculate the dendrogram
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hierTOM = hclust(as.dist(dissTOM),method="average");

# The reader should vary the height cut-off parameter h1

# (related to the y-axis of dendrogram) in the following

colorStaticTOM = as.character(cutreeStaticColor(hierTOM, cutHeight=.99, minSize=20))

colorDynamicTOM = labels2colors (cutreeDynamic(hierTOM,method="tree"))

colorDynamicHybridTOM = labels2colors(cutreeDynamic(hierTOM, distM= dissTOM , cutHeight = 0.998,

deepSplit=2, pamRespectsDendro = FALSE))

# Now we plot the results

sizeGrWindow(10,5)

plotDendroAndColors(hierTOM,

colors=data.frame(truemodule, colorStaticTOM,

colorDynamicTOM, colorDynamicHybridTOM),

dendroLabels = FALSE, marAll = c(1, 8, 3, 1),

main = "Gene dendrogram and module colors, TOM dissimilarity")

The result is shown in Fig. 5. The dynamic hybrid method leads to modules that are slightly too large. In practice
this would not be a problem since one typically focuses on the tip of the branches (highly connected hub genes).
Also it would have a very small effect on the definition of the module eigengenes.
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Figure 5: Gene clustering tree (dendrogram) obtained by hierarchical clustering of TOM-based dissimilarity. The
color rows below the dendrogram indicate module membership identified by the three methods discussed in text and
the simulated module membership. The dynamic hybrid method leads to modules that are slightly too large. In
practice this would not be a problem since one typically focuses on the tip of the branches (highly connected hub
genes). Also it would have a very small effect on the definition of the module eigengenes.

5.c.9 Which dissimilarity measure and which branch cutting method performs best in this data set?

The answer depends on threshold parameters used for branch cutting. For illustration, we carry out a brute force
comparison. In the following, we create tables for relating the different module assignements to the true module
colors.

tabStaticADJ=table(colorStaticADJ,truemodule)

tabStaticTOM=table(colorStaticTOM,truemodule)

tabDynamicADJ=table(colorDynamicADJ, truemodule)

tabDynamicTOM=table(colorDynamicTOM,truemodule)
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tabDynamicHybridADJ =table(colorDynamicHybridADJ,truemodule)

tabDynamicHybridTOM =table(colorDynamicHybridTOM,truemodule)

Next, we use the (unadjusted) Rand index to measure agreement. This computes the Rand index for each table:

randIndex(tabStaticADJ,adjust=F)

randIndex(tabStaticTOM,adjust=F)

randIndex(tabDynamicADJ,adjust=F)

randIndex(tabDynamicTOM,adjust=F)

randIndex(tabDynamicHybridADJ ,adjust=F)

randIndex(tabDynamicHybridTOM ,adjust=F)

The returned Rand indices are as follows:

> randIndex(tabStaticADJ,adjust=F)
[1] 0.5072126
> randIndex(tabStaticTOM,adjust=F)
[1] 0.5997922
> randIndex(tabDynamicADJ,adjust=F)
[1] 0.5033845
> randIndex(tabDynamicTOM,adjust=F)
[1] 0.5980453
> randIndex(tabDynamicHybridADJ ,adjust=F)
[1] 0.7054071
> randIndex(tabDynamicHybridTOM ,adjust=F)
[1] 0.7039642

In this data set, dissTOM performs better than dissADJ for the first two branch cutting method. The results for
the Dynamic Hybrid methods are very similar. In the following, we will proceed with the observed modules from
DynamicHybridTOM. Here is the cross tabulation of colorDynamicHybridTOM with the true module assignment:

> tabDynamicHybridTOM
truemodule

colorDynamicHybridTOM blue brown green grey turquoise yellow
blue 377 8 4 163 30 7
brown 5 211 5 68 3 1
green 0 4 95 35 4 0
grey 26 11 11 326 28 6
turquoise 35 4 4 754 530 3
yellow 7 2 1 64 5 163

We define a shorter name for the module assignemnt of choice, remove unneeded variables and save the results for
use in subsequent sessions:

colorh1= colorDynamicHybridTOM

# remove the dissimilarities, adjacency matrices etc to free up space

rm(ADJ1); rm(dissADJ);

collectGarbage()

save.image("Simulated-NetworkConstruction.RData")
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